

A State-of-the-Art Local Training Methods in Federated Learning

Michal Staňo, Ladislav Hluchý

INSTITUTE OF INFORMATICS SLOVAK ACADEMY OF SCIENCES, BRATISLAVA SLOVAKIA

IEEE 23rd International Symposium on Computational Intelligence and Informatics (CINTI 2023) November 20, 2023

Outline of the Talk

- 1. What is Federated Learning?
- 2. What is Local Training
- 3. Brief History of Local Training
- 4. What does Local Training do?

Algorithm 1 ProxSkip	
1: stepsize $\gamma > 0$, probability $p > 0$, initial iterate $x_0 \in \mathbb{R}^d$, initial control variate $h_0 \in \mathbb{R}^d$, number of iterations $T \ge 1$	
2: for $t = 0, 1, \dots, T - 1$ do	
3: $\hat{x}_{t+1} = x_t - \gamma(\nabla f(x_t) - \mathbf{h}_t)$	\diamond Take a gradient-type step adjusted via the control variate h_t
4: Flip a coin $\theta_t \in \{0, 1\}$ where $\operatorname{Prob}(\theta_t = 1) = p$	p
5: if $\theta_t = 1$ then	
6: $x_{t+1} = \operatorname{prox}_{\frac{\gamma}{p}\psi}(\hat{x}_{t+1} - \frac{\gamma}{p}h_t)$	\diamond Apply prox, but only very rarely! (with small probability p)
7: else	
8: $x_{t+1} = \hat{x}_{t+1}$	♦ Skip the prox!
9: end if	
10: $h_{t+1} = h_t + \frac{p}{\gamma}(x_{t+1} - \hat{x}_{t+1})$	\diamond Update the control variate h_t
11: end for	

ProxSkip: Bounding the # of Iterations

(c) theoretical hyper-parameters

Part 1 What is Federated Learning?

The First Federated Learning App: Next-Word Prediction?

Federated Learning is a collaborative machine learning from private data stored across a (large) number of clients/devices (e.g., hospitals, phones, banks)

Part 2 What is Local Training?

Local Training

- A. Gradient Descent
- B. Distributed Gradient Descent
- C. Distributed Local Gradient Descent

Gradient Descent

 $\min f(x)$ $X \in \mathbb{R}^{d}$

 $x_{t+1} = x_t - \gamma \,\nabla f(x_t)$

Distributed Gradient Descent

Distributed **Gradient Descent**

 $\min f(x)$

devices / machines def ⊥ $\sum f_i(x)$

model parameters / features

 $X \in \mathbb{R}^{d}$

Loss on local data D_i stored on device *i*

n

$$f_{i}(x) = \mathsf{E}_{\leftarrow \mathsf{D}_{i}} f_{i,\leftarrow}(x)$$

The datasets D_1, \ldots, D_n can be arbitrarily heterogeneous

Distributed Gradient Descent

Distributed Local Gradient Descent

Site 1,2,3 – Computer, Mobile Device, Hospital

Broadcast x_{t+K} to the Sites

Part 3 Brief History of Local Training

From Gradient Descent to Local Gradient Descent

Part 4 What does Local Training do?

Local Training

Thank You