
Architecture of a Serverless Cloud Application
IEEE 23rd International Symposium on Computational Intelligence and Informatics

(CINTI 2023)

Ondrej Habala, Martin Bobák, Martin Šeleng, Viet Tran, Ladislav Hluchý, Lukáš
Ivica

Institute of Informatics of the Slovak Academy of Sciences

November 20, 2023

Outline

Introduction

Function as a Service

Pilot Application - Airport Visibility

OpenWhisk

Airflow

Architecture

Summary and Future Work

Introduction

▶ We present part of the construction of an airport visibility meteorological
application based on the Function-as-a-Service paradigm

▶ monolythic version already in use at airports

▶ our work: transformation into a server-less application

▶ goal of the paper: to provide other developers with a methodology on how to use
FaaS systems

Motivation

▶ For the research partner:
▶ part of long-standing research in cloud computing
▶ acquisition of new know-how
▶ opportunity to verify research results in real life use

▶ For the application developer:
▶ modularization of application, allowing several different deployments (different

requirements, functionality, pricing)
▶ unburdens customers from hardware acquisition and maintenance
▶ easier development of new functionality, even spanning new domains
▶ opportunity to gain know-how in modern computing paradigms

What is Function as a Service?
▶ Subset of serverless computing that provides a platform allowing developers to

write and deploy applications without building and maintaining the underlying
infrastructure

▶ infrastructure management (resource provisioning, maintenance and regular
update of base operating systems) are the responsibility of the Cloud provider

▶ developer focuses only on applicaiton code and logic

Advantages of FaaS

▶ Automatic scaling: functions are scaled automatically, independently, and
instantaneously according to the actual demands by the cloud provider. That
relieves developers from concerns of high traffic or heavy use.

▶ Cost efficiency: Users have to pay only for the computing resources they really
use, not for idle resources that are often reserved for handling possible high
demands in the typical IaaS (scaling by cloud provider).

▶ Quick development: developers don’t have to manage infrastructure, they can
focus only on the code, reducing the cost of development and the time to market.

Disadvantages of FaaS

▶ Potential vendor lock-in: The application codes are built on the top of a concrete
FaaS platform and difficult to port to another vendor.

▶ Difficulties for testing: The codes are running on the top of a FaaS platform, it
may make difficulties for creating local test environments for applications

Current FaaS Frameworks

▶ The first commercial provider offering FaaS is Amazon AWS with AWS Lambda
platform,

▶ followed by Google with Google Cloud Functions.

▶ We will focus on two open-source platforms: Apache OpenWhisk, originally by
IBM,

▶ and OpenFaaS (by a company of the same name)

Application - Motivation

▶ Visibility is a crucial element in the safety of all kinds of transport

▶ Almost 50% of all aircraft accidents is due to weather conditions

▶ main cause of weather-related aviation accidents is reduced visibility
▶ better visibility information also leads to better traffic management

▶ reduced fuel consumption
▶ reduced flight delays

Application - Architecture

Image visibility
handler

Image visibility
handler

Daily/nightly script

Camera control New photo
pull

Image visibility
handler

(8 instances)

Panorama stitcher
(Hugin)

Visibility information

Select best
model

Nightly recognition model

New deep learning modelImage filter

Metar generation

Markers preset by DL model

Remote
observer

view

image visibility

Store resultspanorama

OpenWhisk - Origin and Use

▶ free and open implementation of the Function-as-a-Service paradigm

▶ tied to AWS Lambda service, first presented in November 2014

▶ started by Rodric Rabbah of IBM Research

▶ initially developed at IBM Research as Whisk

▶ later renamed to OpenWhisk, made OSS and transferred to the Apache Software
Foundation Incubator

▶ can be installed in several ways, we have used Kubernetes
▶ Helm chart for OpenWhisk is available
▶ local installation of wsk command-line tool also necessary on the developer’s machine

OpenWhisk - Programming Model
▶ an event-driven system

▶ event from an even source feeds into a trigger

▶ a trigger uses rules to execute an action

▶ uses REST API to accept new events

▶ accepts functions in several languages (Java, Python, PHP, Go, Ruby. . .) as well
as black-box code

Runtime

Namespace

Namespace

Event source Event Feed

Namespace

Trigger Rule Action FunctionJSON

OpenWhisk - Application

▶ application is being implemented according to the architecture shown above
▶ so far implemented:

▶ ImageVisibilityHander, as a Java action
▶ Visibility info from 8 xmls, also as a Java action
▶ Panorama stitch, as a black-box docker action, since we use a 3rd party software

(Hugin1)

▶ In the case of the Panorama stitch action, we have created a specific docker
image, based on OpenWhisk’s Docker Runtime image, adding the Hugin software
for panorama-stitching

▶ Panorama stitch could also be done as a Python action with a custom docker
image for OpenWhisk’s Python actions

1Hugin - Panorama Photo Stitcher, https://hugin.sourceforge.io/

https://hugin.sourceforge.io/

Airflow
▶ open source framework for lightweight serverless functions management

▶ amalgamates individual tasks into a workflow which is expressed as a directed
acyclic graph

▶ in our case the tasks are serverless functions

▶ the resulting workflow characterizes the relations between its tasks which also
defines their execution order.

Storage architecture
▶ a server-less layer API
▶ a server-full layer API
▶ storage service

Action A

Runtime environment

Function fx

Server-full data API

Function code

Server-less data API

Storage
System

WebDAV
service

Java libraries

get(type=photo_loc_3,
Date=2023-05-15,

time=12:55:00)

get(https://webdav/
photo_loc_3/2023/05/15/125500.jpg)

HttpRequest(...)

Function

Runtime

server-less

server-full

Serverless Application Architecture
▶ server-less application - function code, server-less data API layer
▶ server-full layer - data API, action API
▶ storage service connected to a storage system
▶ function management (OpenWhisk) and function orchestration (AirFlow)

Container management system

Node 1 Node 2 Node n

Function
management

(OpenWhisk)

Function
orchestration

(AirFlow)

Action A

Function f1

Action APIStorage API

Function code

Data API

Storage
System

Storage
Service

Action B

Function f2

Action API Storage API

Function code

Data API

Summary

▶ presented the transformation of a monolithic application into the serverless cloud
domain (FaaS)

▶ we have chosen the open source OpenWhisk platform, it allows the event-driven
execution of actions

▶ so far transformed parts of the application

▶ we have defined a generalized architecture of a server-less application

Future Work

▶ transformation of additional parts of the application into FaaS actions

▶ continue work of defining a detailed methodology of the transformation of a
legacy application to a server-less one

▶ a generalized server-less application architecture with additional components

Thank you!

For questions please write to martin.bobak@savba.sk or ondrej.habala@savba.sk

	Introduction
	Function as a Service
	Pilot Application - Airport Visibility
	OpenWhisk
	Airflow
	Architecture
	Summary and Future Work

