

Institute of Informatics SAS Bratislava Armed Forces Academy of gen. M.R. Štefánik Liptovský Mikuláš

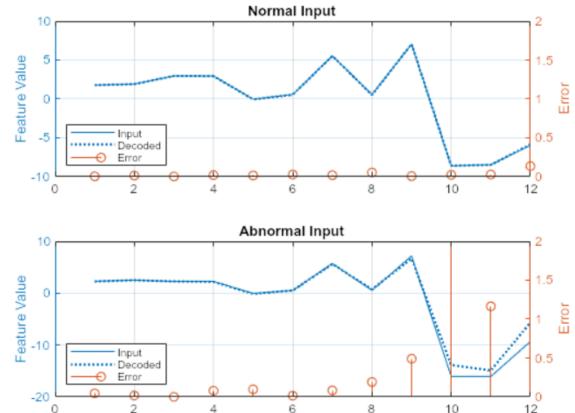
A Contribution to DDoS Attack Detection Based on Deep Neural Networks

Bianca Badidová (AOS), Radoslav Forgáč (ÚI SAV),

Miloš Očkay (ÚI SAV), Martin Javurek (AOS)

Anomaly detection in computer networks

- Process of capturing network characteristics or behaviour that is atypical of the network
- Aims to ensure network security
 - Network monitoring
 - Traffic data analysis
- Numerous approaches including
 - Statistical methods,
 - streaming algorithms,
 - machine and deep learning methods etc.



Neural Network Models for Effective Anomaly Detection

- One of the most commonly used approaches
- Profiles of normal and abnormal behavior
- Methods:
 - Rule-based
 - Packet-based
 - Flow-based

Chosen approach

- Artificial neural networks
 - Bidirectional Long Short-Term Memory (Bi-LSTM)
 - Gated Recurrent Unit (GRU)
- Dataset
 - CIC-DDoS2019
- Evaluation of the reconstruction error
 - RMSE (Rooted Mean Squared Error)
- Setting the threshold vaue
 - Confusion matrix
 - Numerous experiments
- Model results evaluation
 - Classification metrics Accuracy, Recall, Precision, AUC

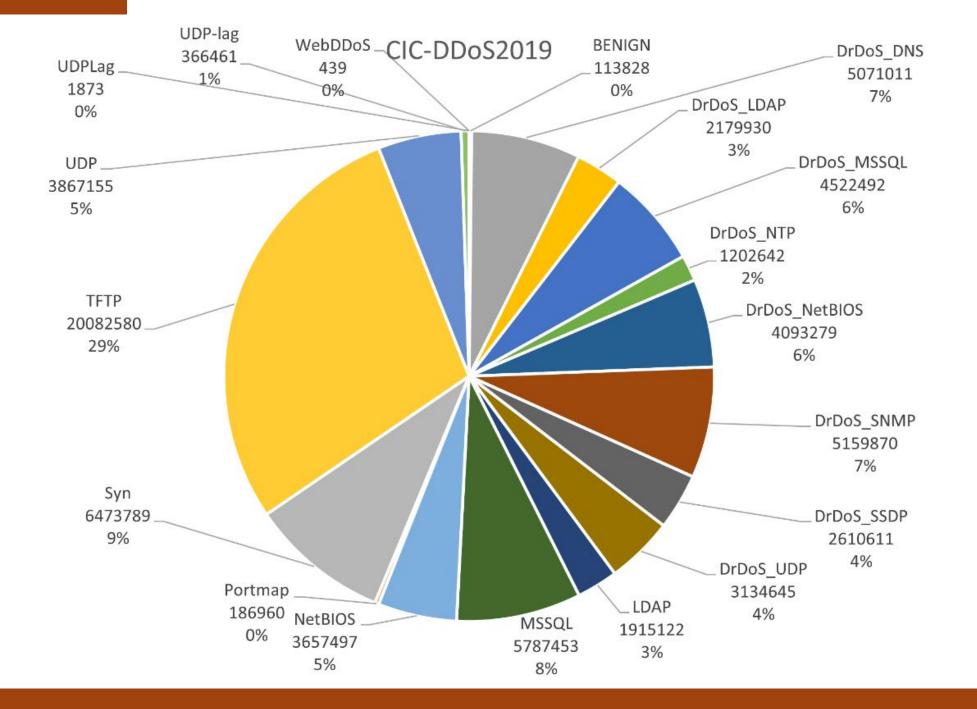
Data

CIC-DDoS2019

2 days of traffic monitoring

70 427 637 labeled DDoS attack samples

•19 DDoS attacks•0.16 % benign communication and 99.84 % attacks



Data preprocessing

Reduntant features removal

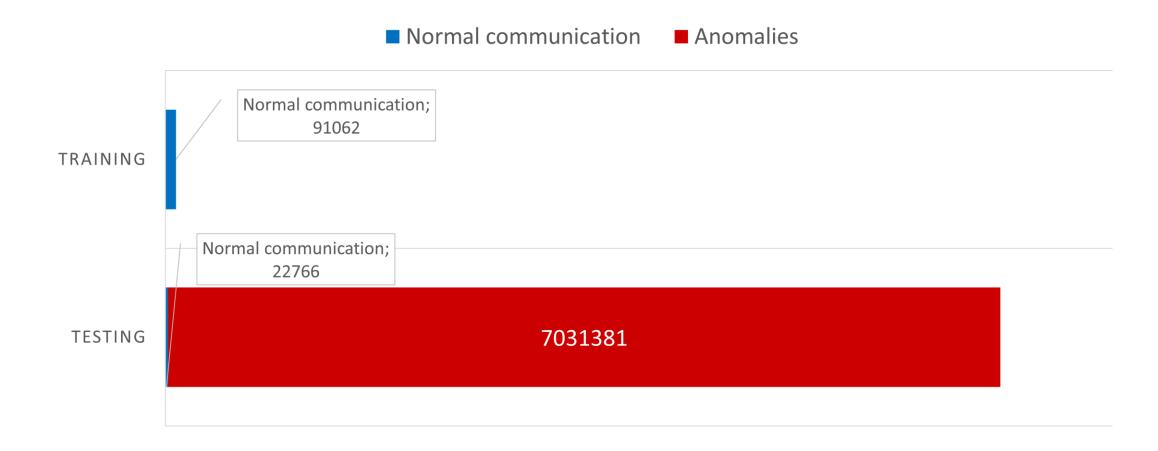
Removal of missing and meaningless values

Data normalization

2

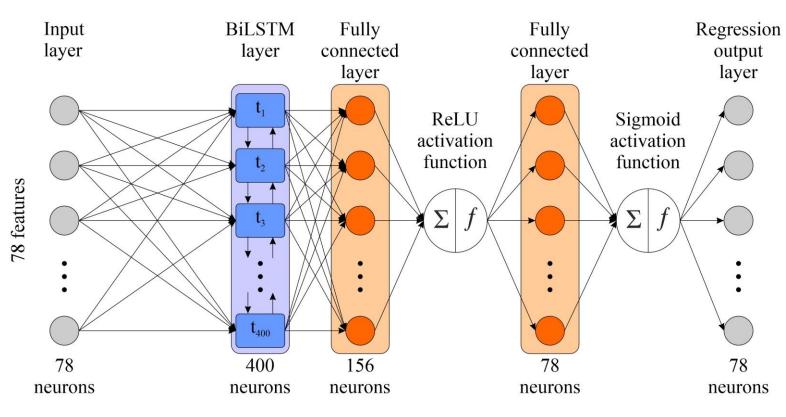
3

Subsets for training and evaluation



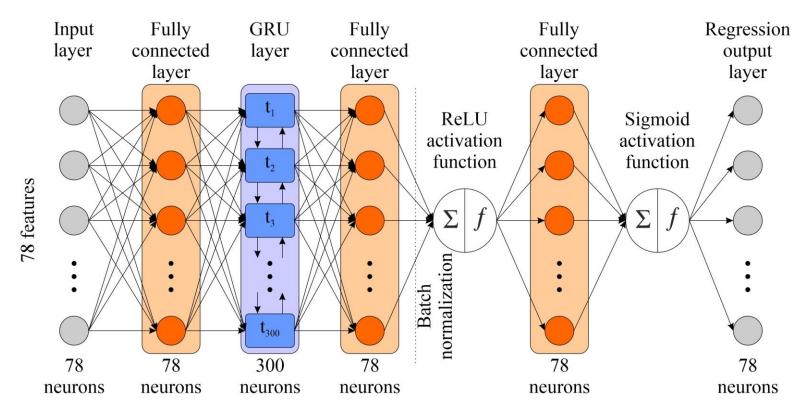
Bi-LSTM

- Deep recurrent neural network
- Input
 - 78 flow features
- Output
 - 78 reconstructed flow features
- Hyperparameters
 - Training algorithm Adaptive moment estimation (ADAM)
 - Mini-batch size 512
 - Learning rate 0.001
 - Number of epochs 10
 - Number of iterations 1770

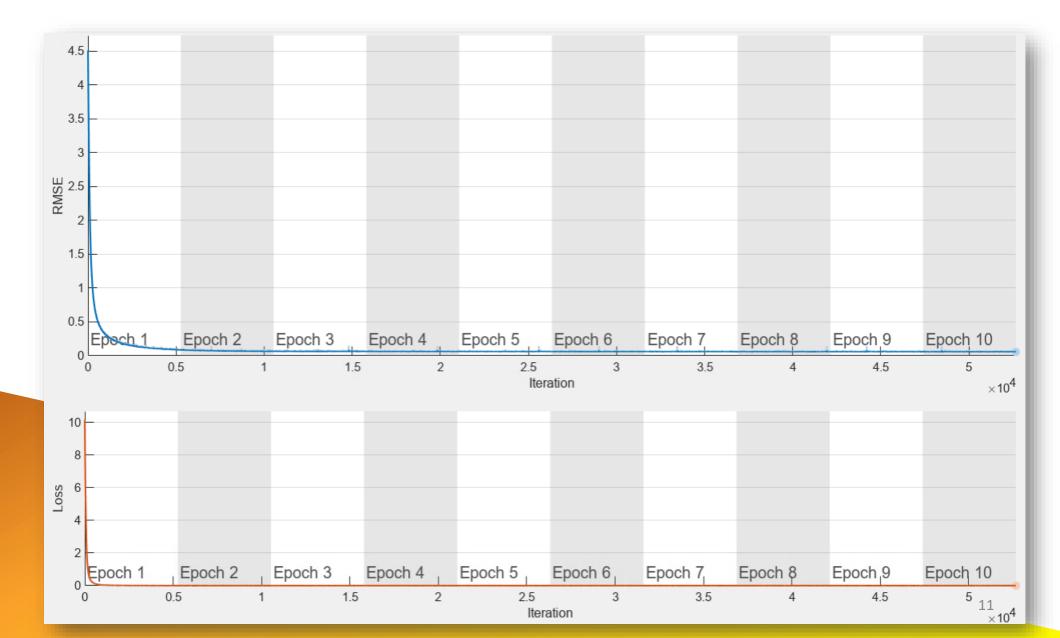


GRU

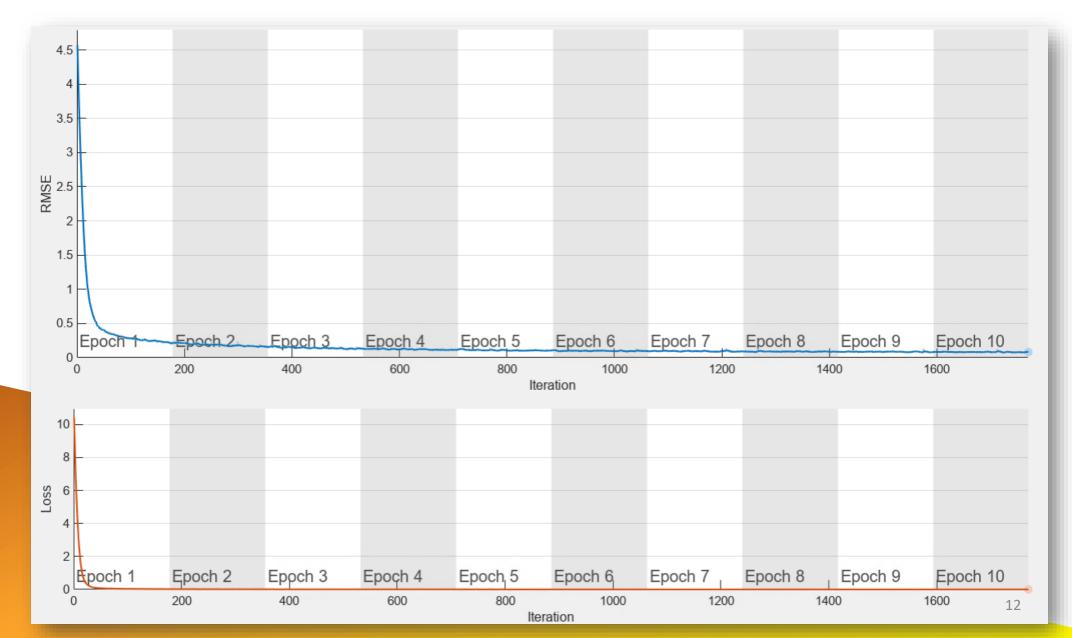
- Deep recurrent neural network
- Input
 - 78 flow features
- Output
 - 78 reconstructed flow features
- Hyperparameters
 - Training algorithm Adaptive moment estimation (ADAM)
 - Mini-batch size 512
 - Learning rate 0.001
 - Number of epochs 10
 - Number of iterations 1770



Bi-LSTM Training progress



GRU Training progress



Evaluation of the proposed models

TABLE I. BI-LSTM AND GRU EVALUATION

Evaluation Metric	Neural network	
	Bi-LSTM	GRU
Accuracy	0.962	0.959
Recall	0.962	0.960
Precision	0.999	0.999
AUC	0.956	0.943
Threshold	0.1	0.1
Training RMSE	0.14	0.008
Training RMSE loss	9.6 × 10 ⁻³	3.4×10^{-3}

Confusion matrices

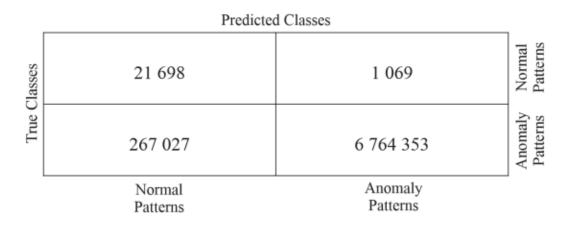


Fig. 5. Bi-LSTM Confusion Matrix

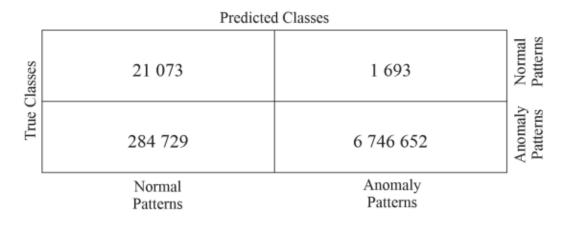
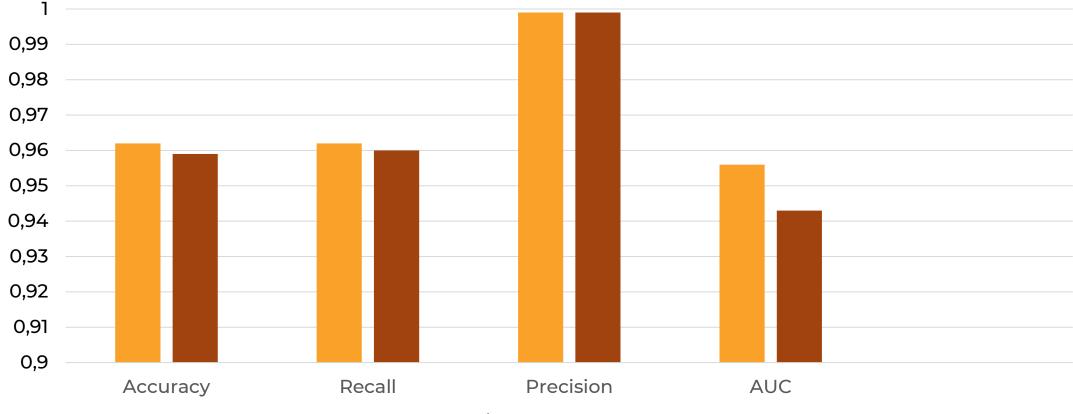


Fig. 6. GRU Confusion Matrix

Comparison of results



■ Bi-LSTM ■ GRU

Conclusion

- Importance of understanding the need to choose the right approach, algorithm and model for anomaly detection
 - Available resources
 - Available time
 - Available data
- Data selection and preprocessing
- Successful implementation of artificial intelligence methods to detect anomalies in network flows
 - 2 different topologies of neural networks Bi-LSTM and GRU on CIC-DDoS2019 dataset
 - Same conditions for evaluation
- Possibility to optimize this solution and implement it into real conditions

Thank you for your attention Questions?

17