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Problem: insulator pollution potentially causing

discharge and short-circuiting (e.g. in wet conditions)
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Source: Zeng et al. (2020). Experimental Study on High Frequency Pulse Current

Variation Characteristics of Pollution Discharge of Insulators. In IOP Conference

Series: Earth and Environmental Science (Vol. 446, No. 4, p. 042006). IOP Publishing.



Sample of field-measured data (VUJE, STN 33 0405)
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S: Total deposit

(mg/day*cm2)

Sr: Soluble

fraction

g0.2: 

Conductivity Upper bounds Q99.5%

S           Sr g0.2

Cumbersome

field

measurements

according to

Technical

standard 

STN 33 0405

New Idea:

Replace

them with

Artificial

Intelligence

Target:

Upper bounds

of S, Sr, g0.2



New idea: Rely on Data from the Network of Slovak 

air-pollution measuring stations (SHMÚ)
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Numerical algorithms simulate spread of pollution

over Slovakia (we started with yearly averages)
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Figure: Local yearly averages of



Data from VUJE+SHMÚ for our feasibility study
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Input attributes Output (target) attributes



CRISP-DM Proces (1) – our effort expectations
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• Figure: By Kenneth Jensen - Own work based CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=24930610

20% effort

(„preparation“)

80% effort („real work“)

https://commons.wikimedia.org/w/index.php?curid=24930610


CRISP-DM Proces (2) – reality:

8

~ 80% effort and time:

~ 20% effort and time

Dates:

4/2020   – first data samples

...     – data understanding

1.10.2020 – start feasibility study

...     – exploring, checking, correcting

and pre-processing data

8.3.2021 – final correct data supplied

26.3.2021 – final presentation

31.3.2021 – end of feasibility study

final report

• Figure: By Kenneth Jensen - Own work based CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=24930610

https://commons.wikimedia.org/w/index.php?curid=24930610
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Problem: no correlation between PM10 and S_VUJE: 
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What we expected (Example): 

Nice relation between PM10 vs. PM2.5: 
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Problem: symptom A

Large S but

not large PM10 

air concentrations

S: total deposit

A
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Problem: symptom B

Large PM10 concentrations

But small S (total deposit)

B
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Search for possible causes of the problem (1): 

PM10

Credit: Phalen, R.F., 2002. The particulate air pollution controversy: 

A case study and lessons learned. Springer Science & Business Media.



14

Search for possible causes of the problem (2)

Semi-remote location in northern Italy: 

Credit: Rembges, D. and Kotzias, D., 2003. Monitoring TSP, PM 10 and PM 2.5 at a semi-remote

area in northern Italy. Fresenius Environmental Bulletin, 12(5), pp.402-405.



Tentative Answer: Incompleteness of SHMÚ data: 

Smaller local temporary pollution sources missing
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+ NEIS

database

of major 

polluters

For a location far away

from known pollution

sources, low PM10 

values will be predicted, 

ignoring the possibility of 

intense local (though

perhaps temporary) 

pollution sources of TSP
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Tentative explanation of symptom A (1):

(after consultations with SHMÚ)

Local source of 

pollution (TSP) 

unknown to SHMÚ 

(NEIS)

(The source may be

temporary)

Consequence: Symptom A

 low PM10 air concentrations

 large total deposit S



17

A: far from known

global sources of 

PM10, but near

uknown local source

of TSP

B: ?

Tentative explanation of symptom A (2):

(after consultations with SHMÚ)
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Underlying Hypothesis: 

PM10 particles float like

fog (negligible effect of 

gravitation):

Apart from rain + dew, 

virtually no PM10 

deposits

PM10

Corollary: 

total deposit S ≈ TSP - PM10

Near a big global PM10 source known to 

SHMÚ (NEIS), but without any strong local

source of TSP (e.g. US Steel in Košice-

Šaca):

Tentative explanation of symptom B (1):

(after consultations with SHMÚ)

Consequence: Symptom B

 high PM10 air concentrations

 small total deposit S
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B: near known big PM10 

source, but without local

TSP sources, e.g. US 

Steel, Košice-Šaca

Conclusion: PM10 and PM2.5 cannot reliably predict total deposit S,

NEW TYPES OF INPUT ATTRIBUTES NEEDED

Tentative explanation of symptom B (2):

(after consultations with SHMÚ; see also [ref.1])

A: far from known

global sources of 

PM10, but near

uknown local source

of TSP



New Types of Data Considered

(most of them dynamic, hourly or weekly)

• Types of agricultural crops cultivated across Slovakia

• Database of major air polluters in Slovakia (NEIS)

• Satellite imagery (Sentinel-2)

• Hourly precipitation totals across Slovakia

• Hourly air concentrations of major air pollutants: PM10, PM2.5, NO2, SO2, O3

• Hourly estimated wet deposition of major wet pollutants

• Thus far we tested the easiest to process ones;

• In the process, we slightly re-defined our task:



Changed target attributes: Field-measured 6-Wk values

(no longer their estimated upper bounds)
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S: Total deposit

(mg/day*cm2)

Sr: Soluble

fraction

g0.2: 

Conductivity Upper bounds Q99.5%

S           Sr g0.2



Satellite data and attributes



Calculation of satellite attributes (1)
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13 spectral bands or common indices: AOT, B1, B2 ... B11, NDWI, Moist

5 types of time series: Val, roz, dif (roz/days), absRoz, absDif

• In total => 5 × 13 = 65 time series per pixel

Double statistical aggregation:

1. Temporal (per pixel): Min, max, avg, P25, P50, P75

2. Spatial (per measurement location) : Min, max, avg, P25, P50, P75

Example satellite attribute names: 

• B10_roz_avgT_Q50S , 

• NDWI_absdif_maxT_Q50S

B8 = NIR, B10 = cirrus, B11 = SWIR

Calculation of satellite attributes (2)
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Satellite Attribute Results Summary (see [ref.2])
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Correlation (no satellites): 0.12

Conclusion: Satellite data helped increase the correlation of predicted vs

measured values from low (cca 0.2-0.3) to medium (cca 0.5-0.6) levels

Satellite Attribute Results Summary (2): g02

Correlation (with satellites): 0.64



Adding more new types of attributes

• Hourly precipitations

2020-21 (radar products of SHMÚ)

• Hourly air concentrations of PM10, PM2.5, O3, SO2, NO2 (N) 

2020-21 (SHMÚ, RIO+CMAQ)

• Hourly wet depositions of PM10, PM2.5, O3, SO2, NO2 (N)

2021 (SHMÚ, CMAQ)



Hourly precipitations 2020-21 

(Aggregated daily and six-weekly)

• We expected smooth sailing to high correlations > 75% ...

• ... but were sadly disappointed: 

• The largest improvement was achieved for Sr:

• Correlation 46% (previously 40%)

• (6% increase, 13 input attributes, better than pairwise interactions)

• No tangible improvement even after adding attributes derived from
hourly concentrations of the main pollutants and their wet depositions



How to Break the Deadlock?

Where is the problem?

• Wrong Data Types?

• We do not think so...

• Small Data Quantity?

• Perhaps, but cannot do much about it...

• Poor Data Quality?

• Most readily available option: How to deal with noisy data?



How to Deal with Noisy Data?

Tentative answer: Robust Statistics

The essence of robust statistics is...

• ... best shown by an illustrative example:



Robust statistics – an illustrative example

31Credit: https://www.adelaide.edu.au/aiml/our-research/machine-learning/robust-statistics

Robust strategies:

1. Remove outliers and 

do ordinary statistics

(least squares)

2. Use L1 (MAE) 

instead of L2 (MSE)

3. L2-based iterative re-

weighting schemes

for outlier treatment

https://www.adelaide.edu.au/aiml/our-research/machine-learning/robust-statistics


Robust statistics – application to our data

(Residual error analysis for total deposit, S)
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Ongoing process of evaluation against real

field-measured data (VUJE, STN 33 0405):

33

S: Total deposit

(mg/day*cm2)

Sr: Soluble

fraction

g0.2: 

Conductivity Upper bounds Q99.5%

S           Sr g0.2

Ambition to replace cumbersome field

measurements with

Artificial intelligence + robust statistics

Preliminary achievement: prediction errors

reduced by cca 50% for 75% of 6-week field

measurements

Evaluation procedure: (summary)



References (work in progress, more to be expected)
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Thank You

Any questions?


