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Introduction

N

Basic definition of DEDS

DEDS (discrete event dynamic systems) are the systems
where the development of the system dynamics depends on
the occurency of discrete events, I.e. DEDS are systems
driven by discrete events.

Typical kinds of DEDS

 flexible manufacturing systems
d communication systems
 transport systems
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The graphical expression of a DEDS variable
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Petri nets (PN) in DEDS modelling
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€ PN are able to express parallelism and conflict
situations

€ PN can be expressed in analytical terms (in the form
of the linear discrete system)

& PN properties can be tested by means of the
reachability tree and invariants

€ PN allow to use analytical approach to the DEDS
control synthesis




Example of a Petri net
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E Heachability tree
0

o | g
%s

Th

£

F 4
P5




N

Conflict situation
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Formal expression of the Petri net structure
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(P,T,F,.GY; PNT = 0;

P=1p1,....pn}

T ={t1,...,tm }
F C P xT
G C T x P

FNG=10
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Formal expression of the Petri net dynamics

(X, U,0,%0); X NU=1

X ={Xq, X1..., Xn }
U = {up, uy ..., uy}
0: X xU — X

X 1S an initial state
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Mathematical model of Petri net

X1 — Xp+ Bu, ., £F=0N
B = G'-F
F.Uk g X
k k N1
XL = VO, seny T
(9p, pn) or € 1{0,¢p,}, 1= 1n
k kT
Ug — (’Ytlﬂ “?’th)

v € {0,1}, j=1,m
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Reachability tree of the above introduced Petri net
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Directed graphs (DG) in DEDS modelling
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X(k+1) =
X (k) = (o)
Ay = {5 }
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State machines

N

L

Petri nets where each transition has only one input and
only one output position are named state machines.

They can be modelled by directed graphs (DG) without any
problem.

Petri nets with general structure

In case of the general structure, when any transition is
allowed to have more input positions and more output ones,
the PN reachabllity graph has to be used.
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Transforming the PN model to the DG model
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Petri net
model
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DEDS control synthesis
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Definition of the control synthesis

Control synthesis = finding the most suitable sequence
of discrete events (control interferences) which is able to
ensure the transition (transformation) of the system from
a given initial state into a prescribed terminal state at
simultaneous fulfilling control task specifications that are
Imposed on the control task.

Control task specifications = criteria, constraints, etc.
Usually, they are not given in analytical terms. Even, often
they are given only verbally.
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Basic principle of the proposed control synthesis
method

reachability tree and the one




Intersection of the trees = state trajectory(-ies)

step k
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Procedure in analytical terms
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e The staight-lined reachabillity tree (SLRT)

X1} = AXp

Xy} A{X; )} =A(AXy) = A% X,

Xy} A{Xy_1} =AY X,
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e The backtracking reachability tree (BTRT)

(Xn_1} Al Xy

{XN-2]

Xo} = AT{X} =AY Xy

A [ Xy_1d = (A Xy
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The intersection of the SLRT and BTRT

— (X()al{Xl}a'"71{XN—1}91{XN})
(Q{XO}aQ{Xl}a“'72{XN—1}7XN)
M; N M,

(XO& {Xl}a X {XN—l}axN)

M,
M
M
M
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Using the principle of causality

L

Due to the principle of causality any shorter feasible

solution is involved in the longer feasible one. Hence,
when

M- is shifted to the left before the intersection.

M = (x0, {x1}, ..., {xXn_2},XN_1) (18)
where xy_1 = X;.
Shifting (finding the (n x (N — k + 1)) matrices
—kM, k = 1,2,...) can continue until the intersec-
tions exists, i.e. until xg € 2{x}} and x; € 1{x_;}.
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trajectories obtained by shifting
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Example 1 — Client-server connection
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The places of the PN-based model

pl - the client (C) requests for the connection
P2 - the server (S) Is listening
p3 - the connection of C with S

p4 - the data sent by C to S
p5 - the disconnection of C by the C himself

The transitions of the PN-based model

t1, t2, t3 — discrete events realizing the system
dynamics
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PN-based model and reachability tree (RT)

L

X0

t1

X2 X3
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Parameters of the PN-based model

o OO
o = O
—_— D =
o OO
o OO
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MATLAB procedure for enumerating the RT

Xreach=x0
Art=[0]
ln,m]=size (F) ;
B=Gt-F
i=0
while i < size(Xreach,?2)
i=i+1;
for k=1:m
x(k)=all (Xreach(:,i) >= F(:,k));
end
findx=find (x)
for k=1:size(findx,?2)
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bb = Xreach(:,i)+B(:,findx((k)) ;

matrix=[];

for j=1:size(Xreach,2)
matrix=[matrix,bbl] ;

end ;
v=all (matrix == Xreach) ;
j=find (v) ;
if any(v)

Art(i,j)= findx(k) ;
else

Xreach=[Xreach,bb] ;
Art(size(Art,1)+1,size(Axrt,
Art(di,size(Art,2))=Ffindx (k)
end ;
end ;
Xreach;
Art;




Enumerated RT

Quasi-functional adjacency matrix of RT

[

o OO O O
oo o O =
o OO Do O

o OO W O
oo OO O

\

Aj =

[0t 0 0 0)
0 0 ty t3 0
00 0 0

0
00 0 0 t
0000 0)

\
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Space of reachable states

X'r‘each —

—_ ) O

— == OO
O = O = O
—_— O = O O
o OO = O
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Example 2 — Two agents cooperation

The agent A needs to do the activity (i.e. to solve a
problem) P. However, A is not able to do P.
Consequently, A requests the agent B to do P for him.

The places of the PN-based model:

pl — Awants todoP

p2 - A waits for an answer from B
p3 - A walits for a help from B

p4 - the failure of the cooperation
pP5 - the satisfying cooperation

P6 - A requests B to do P

p7 - B refuses to do P

34
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P8 - B accepts the request of A to do P

P9 - Bis not able to do P

p10- doing P by B

P11- B receives the request of A
pl2- B is willing to do P for A
p13- the end of the work of B

The transitions of the PN-based model:

tl — t9 represent discrete events realizing the system
dynamics

35




PN-based model
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Enumerated RT

)
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The space of reachable states
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Control synthesis
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The Initial state
xo = (1, O, 0, 0, 0, 0, 0, O, O, O, 1, O, O)T

The terminal state — the successful cooperation

xny = (0,0,0,0,1,0,0,0,0,0,0,0, 1)

40




The intersection of the SLRT and BTRT
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The state trajectories — the successful cooperation

N

L

f’
T 12

€ 11

Y
-

- N W ks OO N o ©

step k
0 1

2 3 4 5

Ik

|
D

eJey)

42




Graphic tool - GraSim
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Succesfull cooperation 1
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Succesfull cooperation 2
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The failured cooperation — when B is not able to do P
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xn = (0, 0, 0, ]_, 0,0, 0,0, 0,0, 0, O, ]_)T

step k
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Adaptivity

There are two kinds of the adaptivity in the DEDS
control synthesis

€ Choosing the most suitable trajectory from the
feasible ones in order to adapt the system behaviour

to external demands (conditions)

€ Changing the structure of the system model in order
to express more kinds of the system behaviour.

s Choosing the most suitable behaviour from the feasible
ones. It is illustrated in the next example.
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Example 3 — Two processes
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{p1, p2, p3} — 15t process P1
{p5, p6, p7} — 2" process P2

p4 — the structural element that is able to influence
e the mutual exclusion of P and P2

e the sequencing of P1 and P2

e the re-running of P1 and P2

X0 — (], 0, 0, ]., ]_, 0’ O)T Xg = (0’ O’ ]_’ O’ 0j ]_’ O)T
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X*r each
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of the process
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Three possibilities of the P2 exclusion
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Path Nu.l = Iﬂzl:atzm‘smn
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Conclusions

N

& Simple general method of DEDS modelling and
control synthesis was presented

@ Its applicability to the special communication systems

(client-server cooperation, two agents cooperation)
was demonstrated

€ Two kinds of adaptivity were described and
Illustrated
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Future work on this way

N

L

€ To innovate the method permanently in order to
extend its reasonable applicability for larger and
larger class of DEDS able to be modelled by Petri
nets

€ To find new simulation procedures and tools
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