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Introduction

N

Basic definition of DEDS

DEDS (discrete event dynamic systems) are the systems
where the development of the system dynamics depends on
the occurency of discrete events, I.e. DEDS are systems
driven by discrete events.

Typical kinds of DEDS

 flexible manufacturing systems
d communication systems
 transport systems
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The graphical expression of a DEDS variable
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Petri nets (PN) in DEDS modelling

N

L

€ PN are able to express parallelism and conflict
situations

€ PN can be expressed in analytical terms (in the form
of the linear discrete system)

& PN properties can be tested by means of the
reachability tree and invariants

€ PN allow to use analytical approach to the DEDS
control synthesis




Example of a Petri net
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Conflict situation
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Formal expression of the Petri net structure

L

(P,T,F,.GY; PNT = 0;

P=1p1,....pn}

T ={t1,...,tm }
F C P xT
G C T x P

FNG=10
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Formal expression of the Petri net dynamics

(X, U,0,%0); X NU=1

X ={Xq, X1..., Xn }
U = {up, uy ..., uy}
0: X xU — X

X 1S an initial state
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Mathematical model of Petri net

X1 — Xp+ Bu, ., £F=0N
B = G'-F
F.Uk g X
k k N1
XL = VO, seny T
(9p, pn) or € 1{0,¢p,}, 1= 1n
k kT
Ug — (’Ytlﬂ “?’th)

v € {0,1}, j=1,m
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Reachability tree of the above introduced Petri net
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Directed graphs (DG) in DEDS modelling
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X(k+1) =
X (k) = (o)
Ay = {5 }
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State machines
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Petri nets where each transition has only one input and
only one output position are named state machines.

They can be modelled by directed graphs (DG) without any
problem.

Petri nets with general structure

In case of the general structure, when any transition is
allowed to have more input positions and more output ones,
the PN reachabllity graph has to be used.
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Transforming the PN model to the DG model
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Petri net
model
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DEDS control synthesis
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Definition of the control synthesis

Control synthesis = finding the most suitable sequence
of discrete events (control interferences) which is able to
ensure the transition (transformation) of the system from
a given initial state into a prescribed terminal state at
simultaneous fulfilling control task specifications that are
Imposed on the control task.

Control task specifications = criteria, constraints, etc.
Usually, they are not given in analytical terms. Even, often
they are given only verbally.
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Basic principle of the proposed control synthesis
method

reachability tree and the one




Intersection of the trees = state trajectory(-ies)

step k
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Procedure in analytical terms

L

e The staight-lined reachabillity tree (SLRT)

X1} = AXp

Xy} A{X; )} =A(AXy) = A% X,

Xy} A{Xy_1} =AY X,
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e The backtracking reachability tree (BTRT)

(Xn_1} Al Xy

{XN-2]

Xo} = AT{X} =AY Xy

A [ Xy_1d = (A Xy
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The intersection of the SLRT and BTRT

— (X()al{Xl}a'"71{XN—1}91{XN})
(Q{XO}aQ{Xl}a“'72{XN—1}7XN)
M; N M,

(XO& {Xl}a X {XN—l}axN)

M,
M
M
M
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Using the principle of causality

L

Due to the principle of causality any shorter feasible

solution is involved in the longer feasible one. Hence,
when

M- is shifted to the left before the intersection.

M = (x0, {x1}, ..., {xXn_2},XN_1) (18)
where xy_1 = X;.
Shifting (finding the (n x (N — k + 1)) matrices
—kM, k = 1,2,...) can continue until the intersec-
tions exists, i.e. until xg € 2{x}} and x; € 1{x_;}.
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trajectories obtained by shifting
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MATLAB procedure for enumerating the RT

Xreach=x0
Art=[0]
ln,m]=size (F) ;
B=Gt-F
i=0
while i < size(Xreach,?2)
i=i+1;
for k=1:m
x(k)=all (Xreach(:,i) >= F(:,k));
end
findx=find (x)
for k=1:size(findx,?2)
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bb = Xreach(:,i)+B(:,findx((k)) ;

matrix=[];

for j=1:size(Xreach,2)
matrix=[matrix,bbl] ;

end ;
v=all (matrix == Xreach) ;
j=find (v) ;
if any(v)

Art(i,j)= findx(k) ;
else

Xreach=[Xreach,bb] ;
Art(size(Art,1)+1,size(Axrt,
Art(di,size(Art,2))=Ffindx (k)
end ;
end ;
Xreach;
Art;
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Example 1 — Two agents cooperation

The agent A needs to do the activity (i.e. to solve a
problem) P. However, A is not able to do P.
Consequently, A requests the agent B to do P for him.

The places of the PN-based model:

pl — Awants todoP

p2 - A waits for an answer from B
p3 - A walits for a help from B

p4 - the failure of the cooperation
pP5 - the satisfying cooperation

P6 - A requests B to do P

p7 - B refuses to do P

30
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P8 - B accepts the request of A to do P

P9 - Bis not able to do P

p10- doing P by B

P11- B receives the request of A
pl2- B is willing to do P for A
p13- the end of the work of B

The transitions of the PN-based model:

tl — t9 represent discrete events realizing the system
dynamics

31




PN-based model
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Enumerated RT
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The graphical expression of the RT
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The space of reachable states

N
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Control synthesis

N

The Initial state
xo = (1, O, 0, 0, 0, 0, 0, O, O, O, 1, O, O)T

The terminal state — the successful cooperation

xny = (0,0,0,0,1,0,0,0,0,0,0,0, 1)
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The intersection of the SLRT and BTRT
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The state trajectories — the successful cooperation
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Graphic tool - GraSim
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Succesfull cooperation 1
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Succesfull cooperation 2
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The failured cooperation — when B is not able to do P
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PN models with general

N

‘structure and dynamics

In general, there are two kinds of the PN models
with the general structure and dynamics:

& The PN models with the finite space of reachable
states (like the previous example of two agents
cooperation)

@ The PN models with the infinite space of reachable
states (like the next example of FMS)
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Example 2 — The flexible manufacturing system
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Consider the robotic cell with two conveyors C1, C2, the NC+-
machine M, with buffer B (having the input part B1 and the
output part B2), and the robot R.

Defining the PN places and transitions:

pl = waiting the input parts t1 = taking from C1 by R
P2 = waiting the output parts  t2 = machining by M

p3 = R Is available t3 = putting on C2 by R
p4 = M is available

p5 = contents of B
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The PN-based model of the FMS
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The reachability tree and reachability graph
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The model parameters
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The RT and state space

0 1 0 0 0 0
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The ambiguity and how to deal with it
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When the capacities of the PN places are infinite, there is
the ambiguity as to the elements of the matrix A. The cycles
engender in the RT and RG. The state space of the

reachable states is infinite. Infinity is expressed by
the symbol w

Hence, in order to find a reasonable solution, the finite
capacities of the PN places have to be determined.

49
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Dealing with the ambiguity

L

PN model with the
Infinite state space

Control synthesis
problem

to be solved
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The finite capacity Cp5 — 1
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3, i =1, 2, 5

Cp;

The finite capacities
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The state space of reachable states
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Using the system GraSim
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The trajectory No. 3
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The other trajectories
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Intelligent Control Synthesis
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DEDS control task specifications are usually given in non-
analytical terms, often only verbally. Knowledge-based
approaches have to be used in order to choose the most
suitable trajectory. The knowledge base (KB) expressing
the control task specifications in the form of IF-THEN
rules can be modelled by means of the logical and/or
fuzzy PN. Thus, the KB can be expressed in analytical
terms analogically to the PN-based model of DEDS. The
Inference mechanism can be described in analytical terms
as well. The author’s approach how to do was presented

recently.
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Knowledge-based choice of the trajectory
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Control task
specifications
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Conclusions

N

& Simple general method of DEDS modelling and
control synthesis was presented

@ Its applicability to DEDS with general structure and
dynamics was demonstrated

& Two different kinds of DEDS were investigated as to
the control synthesis:

= DEDS having the PN model with finite state space
(like the case of the two agents cooperation)

= DEDS having the PN model with infinite state
space (like the flexible manufacturing system)
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€ It was pointed out how to deal with the control
——synthesis of DEDS having the PN model with
Infinite state space.

Future work on this way

€ To innovate the method permanently to extend its
reasonable applicability for larger and larger class of
DEDS able to be modelled by Petri nets

€ To find new simulation procedures and tools
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