INFORMATICS 2007

9th International Conference June 21—22, 2007 Bratislava, Slovak Republic

Petri net-based modelling and simulation of agent systems

František Čapkovič

Institute of Informatics,

Slovak Academy of Sciences Bratislava

Contents

1. Introduction

The agent behaviour is understood here to be discrete event dynamic system

- Discrete event dynamic systems (DEDS) are frequently modelled by means of Petri nets
- Petri nets (PN) yield exact mathematical model of the DEDS in question
- Place/transition PN (P/T PN) offer the model of DEDS in the form of the linear discrete system

The reachability tree (RT) of a P/T PN represents the space of reachable states.
These states (*the RT leaves*) are reachable from a given initial state (*the RT root*).

 Define the straight-lined reachability tree (SLRT) and the backtracking reachability tree (BTRT). The root of SLRT is a DEDS initial state x₀ and the root of BTRT is a DEDS terminal state x_N

The intersection of both the SLRT and the BTRT yields the set of feasible trajectories from the initial state x₀ to the terminal state x_N

P/T PN structure

$F \subset P \times T$; $G \subseteq T \times P$

P/T PN dynamics

 $X_1 = \mathbf{x}_0$

$\langle X, U, \delta, \mathbf{x}_0 \rangle$... dynamics

$X = \{X_1, X_2, \dots, X_N\} \text{ ...state vectors}$

$U = \{ \mathbb{U}_1, \mathbb{U}_2, ..., \mathbb{U}_M \} \dots \text{ control vectors}$

$\delta: X \times U \to X$... transition function

\mathbf{x}_0 ... initial state vector ($X_1 = \mathbf{x}_0$)

2. PN-based modelling DEDS

$\mathbf{u}_{k} = (\gamma^{k}_{t_{1}}, \gamma^{k}_{t_{2}}, \dots, \gamma^{k}_{t_{m}})^{T}$ $\gamma^{k}_{t_{i}} \in \{0, 1\}$

F ... $(n \times m)$ incidence matrix

it corresponds to the set $F \subseteq P \times T$

 $f_{ij} \in \{\mathbf{0}, \mathbf{1}, \dots, M_{f_{ij}}\}, i = 1, 2, \dots, n;$

j = 1, 2, ..., m

G ... $(m \times n)$ incidence matrix it corresponds to the set $G \subseteq T \times P$ $g_{ii} \in \{0, 1, ..., M_{g_{ii}}\}, i=1,2,...,m;$ j = 1, 2, ..., n

3. The reachability tree & graph

$G_{rt} = (V_{rt}, E_{rt})$... reachability tree

$V_{rt} = \{v_0, v_1, ..., v_{N_r}\}$... RT nodes

v_i , $i = 0, 1, ..., N_r$ represent the state

vectors $\mathbf{X}_{i}, i = 0, 1, ..., N_{r}$

$E_{rt} = \{e_1, e_2, ..., e_M\}$... RT edges

Two RT nodes $v_i, v_j \in V$ are connected by

- the oriented arc $e = e_{v_i \rightarrow v_i} \in E$ marked
- by the transition $t = t_{v_i \rightarrow v_j} = t_{\mathbf{x}_i \rightarrow \mathbf{x}_j} \in T$
- For P/T PN represented by $\mathbf{F}, \mathbf{G}, \mathbf{x}_0$
- the RT is represented by A_{rt} , X_{reach}
 - \mathbf{A}_{rt} is the (*N* **x** *N*), $N = N_r + 1$,
- quasi-functional adjacency matrix
- \mathbf{X}_{reach} columns are X_i , i=1, 2, ..., N

4. The PN-based model of an agent

- $P = \{p_1, p_2, \dots, p_{12}\}$
- $\bigcirc p_1$ the agent A is free
 - p_2 a problem P_A has to be solved by A
 - p_3 A is able to solve P_A
 - p_4 A is not able to solve P_A
 - $p_5 P_A$ is solved
 - $p_6 P_A$ cannot be solved by A; another agent has to be be contacted
 - p_7 A asks another agent(s) for help to solve P_A

- p_8 A is asked by another agent(s) to solve a problem P_B
- p_9 A refuses the help
- p_{10} A accepts the request of another agent(s) for help
- p_{11} A is not able to solve P_B
- p_{12} A is able to solve P_B

The PN transitions $t_j \in T = \{t_1, t_2, ..., t_7\}$ represent the discrete events expressing the starting and/or ending the activities

PN-model parameters

Initial conditions and RT

	$(1 \ 0 \ 0 \ 0)$			
	00000			
	00000			
	00000			
	00000			
$\mathbf{X}_{reach} =$	0 0 0 0 0	$X_1 = x$	K ₀	
	00000			
	10000			
	00100			
	0 1 0 0 0			
	00010			
	$\left(\begin{array}{ccc} 0 & 0 & 0 & 0 \end{array}\right)$			

Reachability trees for all of the three cases

5. Modelling the agents cooperation

A complex interface

system parameters

$$\mathbf{x}_0 = (\begin{array}{c} A_1 \mathbf{x}_0^T \\ \mathbf{x}_0^T \end{array}, \begin{array}{c} A_2 \mathbf{x}_0^T \\ \mathbf{x}_0^T \end{array}, \begin{array}{c} A_3 \mathbf{x}_0^T \\ \mathbf{x}_0^T \end{array}, \begin{array}{c} Interface \mathbf{x}_0^T \\ \mathbf{x}_0^T \end{array})^T$$

initial state vector

Interface in the form of the PN module

 $p_1 - AI$ does not want to communicate $p_2 - AI$ is available $p_3 - A1$ wants to communicate $p_{4} - A2$ does not want to communicate $p_5 - A2$ is available $p_6 - A2$ wants to communicate p_7 – communication p_8 – avilability of the communication channel(s)

- t_9 fires the communication when A1 is available and A2 wants to communicate
- t_{10} fires the communication when A2 is available and A1 wants to communicate
 - t_{12} fires the communication when both A1 and A2 want to communicate each other

Because the communication is realized only by transitions, parameters of PN model are:

When the communication is realized by means of transitions and places: $\mathbf{F} = \begin{pmatrix} \mathbf{F}_1 & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{F}_{T_1} \\ \mathbf{0} & \mathbf{F}_2 & \cdots & \mathbf{0} & \mathbf{F}_{T_2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{F}_{N_A} & \mathbf{F}_{T_{N_A}} \\ \mathbf{F}_{P_1} & \mathbf{F}_{P_2} & \cdots & \mathbf{F}_{P_{N_A}} & \mathbf{F}_{Interface} \end{pmatrix} \quad \mathbf{G}^T = \begin{pmatrix} \mathbf{G}_1^T & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{G}_{T_1}^T \\ \mathbf{0} & \mathbf{G}_2^T & \cdots & \mathbf{0} & \mathbf{G}_{T_{21}}^T \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{G}_{N_A}^T & \mathbf{G}_{T_{N_A}}^T \\ \mathbf{G}_{P_1}^T & \mathbf{G}_{P_2}^T & \cdots & \mathbf{G}_{P_{N_A}}^T & \mathbf{G}_{Interface}^T \end{pmatrix}$

indices T_i , $i=1,...,N_A$ denote communication of blocks by means of PN transitions

indices P_i ,	$i=1,\ldots,N_A$	denote communication of blocks
		by means of PN places
F _{Interface} ,	$\mathbf{G}_{\textit{Interface}}^{T}$	parameters of the PN block
		representing the interface

6. Analysis and control synthesis

Hypermodel based on the reachability tree (RT)

$$\mathbf{X}_{k+1} = \mathbf{A}_{rt}^{T}(k) \cdot \mathbf{X}_{k}, k = 0, 1, \dots$$

 $\mathbf{A}_{rt}^{T}(k)$ (N×N) functional adjacency matrix of RT

$$\mathbf{X}_{k} = ({}^{k}X_{1}, {}^{k}X_{2}, ..., {}^{k}X_{N})^{T}$$
, $k = 0, 1,$

vicarious state vector

$${}^{k}X_{i} = \begin{cases} 1 \text{ if } i = k+1 \\ 0 \text{ otherwise} \end{cases}$$
; $i = 1, 2, ..., N$

 $\mathbf{x}_t \in \{ X_1, X_2, X_3, \dots, X_N \}, \text{ e.g. } X_K = \mathbf{x}_t \text{ is a feasible} \\ \text{terminal state}$

The vicarious vector \mathbf{X}_k represents the real state vector \mathbf{x}_k

The straight-lined RT (SLRT) is generated as:

$$\mathbf{X}_{k+1} = \mathbf{A}_{k}^{T} \cdot \mathbf{X}_{k}, k = 0, 1, ...$$

The backtracking RT (BTRT) is generated as:

$$\mathbf{X}_{k-1} = \mathbf{A}_{k-1} \cdot \mathbf{X}_k, \ k = K, \ K-1, \ \dots$$

Control synthesis

Store SLRT in the matrix

 $\mathbf{M}_1 = (\mathbf{X}_0, {}^{sl}{\{\mathbf{X}_1\}}, \ldots, {}^{sl}{\{\mathbf{X}_{K-1}\}}, {}^{sl}{\{\mathbf{X}_K\}})$

and store BTRT in the matrix

$$\mathbf{M}_{2} = (^{bt} \{ \mathbf{X}_{0} \}, ^{bt} \{ \mathbf{X}_{1} \}, ..., ^{bt} \{ \mathbf{X}_{K-1} \}, \mathbf{X}_{K})$$

The intersection yields the space of feasible trajectories

 $\mathbf{M} = \mathbf{M}_1 \cap \mathbf{M}_2 = (\mathbf{X}_0, \{\mathbf{X}_1\}, \dots, \{\mathbf{X}_{K-1}\}, \mathbf{X}_K)$

$$\{\mathbf{X}_i\} = {}^{sl}\{\mathbf{X}_i\} \cap {}^{bt}\{\mathbf{X}_i\} = min({}^{sl}\{\mathbf{X}_i\}, {}^{bt}\{\mathbf{X}_i\}), i = 0, 1, ..., K$$

$$sl\{\mathbf{X}_0\} = \mathbf{X}_0$$
, $bt\{\mathbf{X}_K\} = \mathbf{X}_K$

Example – three agents cooperation

$${}^{A_1}\mathbf{x}_0 = {}^{A_2}\mathbf{x}_0 = (1,1,1,0,0,0,0,0,0,0,0,0)^T$$

 $A_{3}\mathbf{x}_{0} = (1,1,0,1,0,0,0,0,0,0,0,0)^{T}$, p_{mex} is active

 A_1 resolved the problem P_{A_3} instead A_3 :

$$\{{}^{A_3}t_2, {}^{A_3}t_7, {}^{F_{C_1}}t, {}^{A_1}t_3, {}^{A_1}t_6, {}^{MEX}t_{in1}, {}^{MEX}t_{out1}\}$$

 A_2 resolved the problem of A_3 :

$$\{ \begin{array}{c} A_3 & A_3 & F_{c_2} \\ t_2, t_7, t_7, t_7, t_7, t_7, t_7, t_8 & t_7, t_6, t_{102}, t_{102} \end{bmatrix}$$

Conclusions

PT PN-based modelling the agents was presented

the RT-based hypermodel was created

